Computing Haplotype Frequencies and Haplotype Phasing via the Expectation Maximization (EM) Algorithm

Sorin Istrail

Department of Computer Science Brown University, Providence sorin@cs.brown.edu

September 14, 2010

Outline

- Outline
- 2 The Algorithm by one example, first
 - Problem definition
- The solution
 - The Input
 - The number of 00 haplotypes in the input
 - Computing $\theta_{00}^{(t+1)}$
- 4 The EM Algorithm

EM by one Example

- **Problem**: Consider two loci with two allele 0 and 1 at each locus.
- **Given**: (We observe) the genotypes of the individuals at both loci.
- Find: The estimate at the haplotype frequencies.

Solution

- There are a total of four possible haplotypes 00, 01, 10, 11 at the two loci.
- Let us denote their frequencies by $\theta_{00}, \theta_{01}, \theta_{10}, \theta_{11}$.
- Suppose that we have computed already $\theta_{00}^{(t)}, \theta_{01}^{(t)}, \theta_{10}^{(t)}, \theta_{11}^{(t)}$.
- We want to compute $\theta_{00}^{(t+1)}$ as a function of $\theta_{00}^{(t)}, \theta_{01}^{(t)}, \theta_{10}^{(t)}, \theta_{11}^{(t)}$.

The Genotype Sample: several types A, B, C, D, E, F

- There are n_A genotypes or individuals of type 22 we denote Y_A the set of such genotypes
- There are n_B genotypes or individuals of type 02
- There are n_C genotypes or individuals of type 20
- There are n_D genotypes or individuals of type 00
- There are n_E genotypes or individuals of type 11

The fraction of the genotypes in each category that contains the 00 haplotype

- (A) For the A group of n_A individuals the possible haplotypes show as follows in explanations of the genotypes: $\frac{00}{11}$ or $\frac{01}{10}$ (the "fractions" represent the separation of mother-father) chromosomes.
- $P(Y_A) = 2\theta_{00}^{(t)}\theta_{11}^{(t)} + 2\theta_{01}^{(t)}\theta_{10}^{(t)}$
- $\bullet \ P(\tfrac{00}{11} \mid Y_A) = \tfrac{2\theta_{00}^{(t)}\theta_{11}^{(t)}}{2\theta_{00}^{(t)}\theta_{11}^{(t)} + 2\theta_{01}^{(t)}\theta_{10}^{(t)}}$

The fraction of the genotypes in each category that contains the 00 haplotype (continued)

- For group B one haplotype is 00 and the other one is 01
- For group C one haplotype is 00 and the other one is 10
- For group D both haplotypes are 00
- For group E both haplotypes are 11

Computing $\theta_{00}^{(t+1)}$

• Therefore the total expected number of 00 haplotypes are:

•
$$n_{00}^{(t+1)} = n_A P(\frac{00}{11} \mid Y_A) + n_B + n_C + 2n_D$$

• so we update

$$\bullet \ \theta_{00}^{(t+1)} = \frac{n_{00}^{(t+1)}}{2n}$$

• where $n = n_A + n_B + n_C + n_D + n_E$

The EM Algorithm

- The EM algorithm is an iterative method to compute successive sets of haplotype frequencies $p_1, p_2, ..., p_T$ starting with some initial arbitrary values $p_1^{(0)}, p_2^{(0)}, ..., p_T^{(0)}$
- Those initial values are used as used as if they were the unknown true frequencies to estimate the explanation frequencies $P(h_k h_l)^{(0)}$. This is the **Expectation step**.
- These expected explanation frequencies are used in turn to estimate haplotype frequencies at the next iteration $p_1^{(1)}, p_2^{(1)}, ..., p_T^{(1)}$. This is the **Maximization step**.
- ... and so on until convergence is reached (i.e., when the changes in haplotype frequency in consecutive iterations are less than some small value (ϵ).

EM Algorithm initialization

- **1** All explanations are equally likely $P_j(h_k h_l)^{(0)} = \frac{1}{c_j}, 1 \leq j \leq m$ where m is the total number of genotypes in the input; and $n_1, n_2, ..., n_m$ are the counts for each genotype type.
- All haplotypes are equally frequent in the sample.
- Omplete Linkage Equilibrium: Haplotype frequencies = the product of single locus allele frequencies
- Initial haplotype frequencies are picked at random.

The E Step

 The Expectation step at the tth iteration consists of using the haplotype frequencies in the previous iteration to calculate the probability of resolving each genotype into different possible explanations:

$$P_j = \sum_{i=1}^{c_j} P(explanation_i) = \sum_{i=1}^{c_j} P(h_{ik}h_{il})$$

- if k = I then $P(h_k h_I) = p_k^2$
- if $k \neq l$ then $P(h_k h_l) = 2p_k p_l$ where a_1 is a constant term and p_{ik} and p_{il} are the population frequencies of the corresponding haplotypes.

The E Step (continued)

 The likelihood of the haplotype frequencies given the genotype counts n₁, n₂, ..., n_m is

$$L(p_1,...,p_T) = a_1 \prod_{j=1}^m (\sum_{i=1}^{c_j} P(h_{ik}h_{il}))^{n_j}$$

where $\sum_{i=1}^{T} = 1$, $and(h_{ik}h_{il})$, $1 \le i \le c_j$ are the set of explanations of the jth genotype that occurs n_j times in the input.

• Let
$$P_j^{(t)} = \sum_{i=1}^{c_j} P(h_{ik}h_{il})^{(t)}$$

The E Step formula

• The E Step formula is:

$$P_j(h_k h_l)^{(t)} = \frac{P(h_k h_l)^{(t)}}{\sum_{i=1}^{c_j} P_j^{(t)}}$$

The M Step

• Haplotype frequencies are then computed for each Maximization step: for $1 \le r \le T$

$$p_r^{(t+1)} = \frac{1}{2} \sum_{j=1}^m \sum_{i=1}^{c_j} \delta_{ir} P_j (h_{ik} h_{il})^{(t)}$$

where δ_{it} is an indicator variable equal to the number of times haplotype t is present in explanation i; and this number can be 0,1 or 2.